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The two-component neutrino field in general relativity 

J. B. GRIFFITHS and R. A. NEWING 
Department of Applied Mathematics, University College of North Wales, 
Bangor 
IMS. 1,eceiaed 9th September 1969 

Abstract. The spinor equations for two-component neutrinos in Riemannian 
space-time are shown to be equivalent to tensor equations analogous to those 
for an electromagnetic field with a complex current density vector. The 
structure of the energy-momentum tensor for neutrinos is more complicated 
than for the Maxwell field, and in constructing exact solutions of the combined 
neutrino-gravitational equations it has been found necessary to build up the 
energy-momentum tensor directly from spinor quantities. Exact solutions for 
pure radiation fields are obtained in the case of conformally flat and cylindrically 
symmetric space-times, and also for a non-diagonal radiation metric. I t  is 
shown that there are no spherically symmetric radiation solutions for the type of 
neutrino field considered. 

1. Introduction 
In  recent years much work has been done on neutrino fields, a particular interest 

in two-component theory having been stimulated by Lee and Yang (1956). Most of 
this work has been concerned with attempts to obtain a geometrical theory for a 
neutrino field, or to consider and compare different methods of adapting spinor 
equations to general relativity. However, very few exact solutions have been obtained, 
and those that have been published are usually comparatively trivial. The aim of this 
paper is to examine the tensor representation of the neutrino equations and to develop 
a method of obtaining solutions, which can be interpreted as two-component neutrino 
fields, by solving directly the field equations for the combined neutrino-gravitational 
field subject to the neutrino condition. 

In  order to build up a mathematical description of a neutrino field, we start with 
Dirac’s equation for a relativistic particle in Minkowski space-time 

C 

where the y’ are a set of 4 x 4 matrices which obey 

where 
y’Lyv + yvyu = 2r)UYI 

and 4 is a four-component spinor. For our purposes we can define a neutrino to be 
that particle which is described by Dirac’s equation and has zero mass and zero 
charge. Thus it obeys 

in flat space-time. We use a comma to denote partial differentiation and a semi-colon 
to denote covariant differentiation. 

In  $ 2  we indicate the method of generalizing Dirac’s equation by using four 
matrices yfi which obey y@yv+yvyu = 2gfivI at every point. The covariant derivative of 
spinors in Riemannian space-time is then considered in $ 3 .  
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Then in $ 4  we develop the tensor method of incorporating Dirac's equation into 
general relativity. Whittaker (1937) and Penney (1965) have obtained a connection 
between a two-component spinor and a self-dual antisymmetric tensor S,, of zero 
norm. They have obtained the identities 

SI""S,, = 0 
SuuSzv = DUD, 

SuuDa~v  = DUHv (1.5) 
where the asterisk denotes the conjugate complex, D, is a real null vector and H, is in 
general complex. In  this paper we use the complex dual defined by 

where 

[pvaP] being the permutation symbol and g the determinant of the metric tensor. 
We then show that the neutrino equation in Riemannian space-time is equivalent to 
the tensor equation 

The neutrino equations (1,3), (1.4) and (1.6) are remarkably similar to corresponding 
equations for the null electromagnetic field. With suitable units the Maxwell equations 
may be expressed in the form (Goodinson and Newing 1968) 

SUv;, = H'. (1.6) 

Wuv;v  = j .  
where? is the current density vector and the complex self-dual tensor o b v  is defined 
in terms of the electromagnetic field tensor Ffi" by 

W U V  = FUV+$UV. 

For a null field, i.e. a field for which the two invariants Fa13FBa and Fal3POa are zero, 
wILy is such that 

and 
WUaWa, = 0 

ita * = L"L 

where L, is the propagation vector of the electromagnetic field. The neutrino and 
Maxwell fields differ in that the energy-momentum tensor E," for the Maxwell field is 
given by W , ~ W * ~ ~ ,  whereas it has not been possible to find a simple expression for EbV 
in terms of the tensor S,, in the case of the neutrino field. For this reason it has been 
found necessary to build up Eu , from spinor quantities when constructing exact 
solutions of the combined neutrino-gravitational field equations. 

We then consider a purely spinor approach in the last section and obtain a number 
of exact solutions of the neutrino-gravitational field equations corresponding to the 
particular case of pure radiation fields. Solutions are obtained which correspond to a 
non-diagonal radiation metric, to conformally flat space-time and to a cylindrically 
symmetric space-time. Finally, it is shown that a pure radiation field which is 
spherically symmetric cannot be interpreted as two-component neutrino radiation. 

2. Dirac matrices and bilinear covariants 

space-time is to introduce new matrices yu such that 
An obvious way of generalizing the commutation relations (1.1) to Riemannian 

(2.1) 
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These new matrices can be represented by a linear combination of the matrices of 
special relativity. In  this paper we consider only those y matrices which are linear 
combinations of the four constant matrices P, of Dirac's standard representation in 
Minkowski space : 

Then 

where C is Schwinger's C matrix (defined by $7 = - C Y @ C - ~ ) .  

becomes 

where +,a is the covariant derivative of + in spinor space. Since the yfi are linear 
combinations of the p", the Hermitian conjugate of the y@ can be obtained by 

The neutrino equation (1.2) can thus be carried over into general relativity and 

r"+,a = 0 (2.3) 

Y@+ = P O Y U P O .  

If 6 denotes the transpose of a spinor and 6 + its Hermitian conjugate, we define the 
adjoint and the charge conjugate spinors by 

B = ++Po 

$P = CJ. 

With a suitable definition of spinor differentiation, (2.3) implies that 

$,aya = 0. 
We also need to define the matrix 

K ~ U V  y 5  = i % E K A f i v Y  y y y 

which anti-commutes with all the matrices y' and has the property 

(y5)2 = 1. 

Also, since yfl are linear combinations of p", y5 = P 5 ;  the proof of this is given in 
appendix 1. 

From these quantities it is possible to construct the bilinear covariants $y&, 
$yuyv+, $yuy5+ etc. Pauli (1935, 1936) and Kofink (1937, 1940) have obtained a 
number of identities involving products of these covariants. In  this paper we make 
use only of the identity 

( J W + ~ > ( S Q Y ~ ~ X >  = (~Px)($$?+) - (BPP5~)($QP5+4> 

- (8V '~x) ($QPod)  + (QPP0P5~>($QP5P0+> (2.5) 
+ (QWo+)($QPo~> - (Jf'P0P5+)(SQP5P0x) 

where 8, 4, $, x are any spinors and P and Q are arbitrary matrices. This identity is 
simply a restatement of Kofink's identity (1940, p. 438). 

3. Covariant differentiation of spinors 
Following a common notation (see, for example, Brill and Wheeler 1957) we shall 
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define the covariant derivative of a spinor by 

4 , v  = 4,v-rv4 
$1, = B,v+$rv 

where the spinor connection r V  will be expected to depend on the metric tensor as 
well as on the ,k3 matrices. We also require that the y matrices be constant with 
respect to spinor differentiation and that the spinor derivations of bilinear covariants 
are the same as the corresponding covariant tensor derivatives. The  requirement that 
(PYAYU4L v = ( P Y A Y U 4 ) I V  implies that 

f ,  = -crvc-l 
and this condition eliminates the arbitrary vector field which is sometimes associated 
with the spinor connection. The  connection rV is then uniquely determined and, 
with the two-component restriction 4 = - y54 referred to later, r V  may be shown to 
be 

rv = aYff;VYff. 

4. Tensor equation for the two-component neutrino field? 
Whittaker (1937) and Penney (1965) have shown that any two-component spinor 

field has an associated set of tensors D,, Sit,,, H,, where D, is a real vector, S,, is a 
self-dual antisymmetric tensor and H, is complex, which satisfy 

Sl"'S*ffv = DUDv 

S""D,;, = DUH, 

D,D" = 0, S,,S"V = 0. (4.3) 

These tensors can be related to non-zero bilinear covariants of the spinor field, In  
fact, if we make the two-component restriction 

then the tensors can be identified by 

S,, is self-dual on account of (4.4) and (Al), and the identities (4.1), (4.2) and (4.3) 
can be shown to be satisfied on account of the Pauli-Kofink identity (2.5). The  vector 
D, is interpreted quantum-mechanically as a probability current, but will be interpreted 
here classically as a neutrino flux. I t  follows from the neutrino equation (2.3) that 

DUI ,  = 0. (4.5) 
Taking the divergence of Suv, we obtain 

sy, = HUS d2py ' ( yv4 ,v .  

t Tensor equivalents of the four-component Dirac field with non-zero rest mass have been 
extensively discussed by Yamamoto (1936). 
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The neutrino equation (2.3) implies that 
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Sfi',, = HU. (4.6) 
This can also be shown to be a sufficient condition for the neutrino field by considering 
the product ($yax)(~yayY$,, , ) ,  where t,!~ and x are arbitrary spinors with the only 
restriction that 

x = -y5x. 

($Yax>($"r"rv$, v> = 2($JYV#,Y)(PX). 

Now, using the Pauli-Kofink identity (2.5), we obtain 

Thus, since $ and x are arbitrary, (4.6) implies the vanishing of yv$lY, and is therefore 
a necessary and sufficient condition for a neutrino field (Goodinson 1969). 

Equation (4.6) is analogous to the Maxwell equations wu"; = j .  for a null electro- 
magnetic field, Hu playing the role of a current vector. This analogy was noticed by 
Penney (1965), but he confined his attention to the case H, = 0. For the general 
neutrino field Hu will be a complex non-zero vector. 

The field equations for a combined neutrino-gravitational field are (4.6) or (2.3), 
together with the Einstein gravitational equations 

R I1v - 1  2g,v R =  -EDu 

where the energy momentum tensor for the neutrino field may be taken to be (Pauli 
1933, Brill and Wheeler 1957) 

Euv = *iC~~~,UYY$ - $Yu$lfi + 4, vYu4 - $Yu$, v). (4.7) 
It follows from (2.3) that E," = 0, just as for the electromagnetic field. The curva- 
ture scalar R is therefore zero, and in suitable units the gravitational equations 
reduce to 

R,, = -EUY.  (4.8) 
For pure radiation fields it is reasonable to suppose that 

(4.9) EfiV = u2DfiDU 

where U is some real scalar. In  this case the divergence condition RfiY;Y = 0 implies 
that 

(4.10) 

on account of (4.5). This equation could be satisfied by taking U constant and 
DuiY = 0. This case leads us to the condition on the Ricci tensor RLf i ;u  = 0 which is 
obtained by Penney (1965) and by Inomata and McKinley (1965). Neutrino fields 
satisfying this condition are the 'restricted class' defined by the latter authors. 

In  conclusion, it may be noticed that on account of (4.9) and (4.10) less restrictive 
necessary conditions for the existence of a pure neutrino radiation field are provided 
by the Rainich-type conditions 

2u,,DYD" -+ U D ~ ~ ; ~ D '  = 0 

R," = 0, R,,R"' = 0 

RfiV;CZ R"R = R R V ; U  R'fi' 

If U is a constant the latter condition may be replaced by 

R,,:, RuR = 0. 
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5. Some exact solutions of the neutrino-gravitational equations 
The tensor technique developed in $ 4  is not complete in that it is not at all 

obvious that the expression E,, = 02D,D, assumed for the energy-momentum tensor 
of the neutrino radiation field will be consistent with the definition (4.7) of E,, in 
terms of the spinor field. It is therefore necessary, in constructing exact solutions of 
the neutrino-gravitational field, to take the spinors as the fundamental quantities. The  
basic equations of the combined field are the neutrino spinor equation (2.3), the 
definition of E,, in terms of spinors (4.7) and the standard relativistic field equations 
(4.8). - -  The two-component r _  restriction 4 = - y 5 4  implies that 4 is of the form 

5.1. Solution (1) 

form 

For this metric the y matrices may be taken to be 

We shall first consider neutrino fields admitted by space-times with metrics of the 

ds2 = ho2(dX0)2 +2dx0 dxl -h,2((dx2)2 + (d2)'). (5 .1)  

1 

For this metric we are taking x1 to be a radiation coordinate. Thus the vector D, is 
given by D, = Do6E and this (see appendix 2) implies that 

p =  - 4 .  ( 5 . 3 )  
Let us consider the neutrino field defined by (5.1), (5.2) and ( 5 . 3 )  with the re- 

striction of axial symmetry, i.e. h,, h, andp  are independent of x3. Expressions for the 
Ricci tensor, the energy-momentum tensor, the neutrino condition and the vector H, 
are given in appendix 2. 

For axial symmetry RO3 = 0, and so, for non-zero p ,  h, must be independent of 
x2. Then, since R1, = 0 we could take 

h2 = x l f ( xo )  

where f ( x o )  is arbitrary. 
The  neutrino condition implies that p is of the form 

p = -  4 x 0 )  
X1dhO 

where A(xo) is an arbitrary complex function. This implies that E,, and E,, are both 
zero, and these in turn give 

f,o 2m(x0) 
f (.'IZ (ho2)>,1 = 2- + - 

where m(xo) is arbitrary. Then R2, = 0 gives the final condition that 

The  Ricci tensor for the metric 
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is 
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and the neutrino-gravitational equations are satisfied if the neutrino flux vector is 
taken to be D, = 4h0pp*8,O, where 

( being an arbitrary function of xo, the Ricci tensor then being RUv = -a2D,,D,, 
where 

0 = chxl t , ,  - 6 m  
i f  

We are indebted to a referee for the observation that it is possible to make a coordinate 
transformation such that f can be taken to be unity. 

5.2. Solution (2) 
Now consider the similar metric given by 

ds2 = B(x0, x2, x , ) ( ~ x ' ) ~  +2dx0 d d  -(dX2)' -(dx3)'. 

Expressions for the Ricci tensor, the energy momentum tensor and the neutrino 
condition can again be obtained from appendix 2. The neutrino condition gives 

pB1j4 = A(xo)  exp(L(x0)-M(x2 - ix,))) 

where A, L and 1 i  are arbitrary, L and M being complex. But E,, = 0 and E,, = 0 
imply that M = const., and so we can put 

Then 
p = B-1/4P(~0)exp{it(x0)}. 

B,2z + B,33 = 4ch2/Bi(pp\ -p*p,,) 

= 8ch[,,P2 

which is independent of x2 and x3, and so we can write B in the form 

where 

5 . 3 .  Solution (3) 

are necessarily conformally flat. So we consider the metric 

B = a(xo)(x2))" + b(x0)x2x3 + c(x0)(x3))" + d(xo)x2 +e(x0)x3 +f(xo)  

U(Xo)  + C(Xo) = 4Chf,,P2. 

Collinson (1968)  has shown that the neutrino fields considered by Penney (1965) 

(5.4) ds2 = e28{(dx0)2 - (dd) ,  - (dx2), - (dx3),}. 

The Ricci tensor for this metric is 

R,v = 2(0,,v - e , , e , v )  +guvga4(e,u4 + 2e,,e,,) 
and the energy-momentum tensor reduces to 

E," = icfiee@ - O(PP5 -P*P,v) + (PP5 -p*p , , ) (G  83). 
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The  neutrino condition becomes 

Thus 
p = exp( -$e) exp{l(xO - x1)M(x2 - ix3)}. 

Yow, to solve the field equations, R,, = - Euv. 
E,, = 0,  E,, = 0, E,, = 0 imply that 

e -e  = f ( x o ,  x') + A(xo ,  x')x2 + B(xo, x1)x3 + C(xo, x1))((x2)>" + (~3))") 
and 

eogab(6,aB + 26,,6,,) + 4C(xo, 2') = 0 .  

The field equations in EO2, E12, Eo3 and E13 give A, B and C as functions of xo-xl, 
Those involving Eoo, Eo l ,  Ell give 

V , O l  +f,oo + f a  = 0 
.f,11-f.o0 = 4c 

f , o o  + ANx2 + BRx3 + C"{(x2)>" + (.,))"I +2C = crZi(ppyo -p*p,,). 
-4 general solution of these is given by 

A = const., B = const., c=o 
f = f ( x 0  - x') + Dx' (A2 + B2 + D2)'I2~O, D = const. 

Thus for a conformally flat space of type (5.4) ~ 7 e  have the exact solution 

e -e  = f ( x o  - x') + anxw 

where a, are constants satisfying auau = 0 

p = exp( - $6) exp{Z(xO - x') + ih(xO -XI)} 

where Z(xo - x') and X(xo - x') are arbitrary real functions which satisfy 

This is a radiation solution of type R,, = - c2D,D, where 

0 2  = $8 e -21h' 

and the vector H,, is given by 

H, = 21/2p2 ee((ia2 + a,)($ - $1 + (ao + al>(iS: + 6;)). 
5.4. Solution (4) 

Let us consider now a cylindrically symmetric space-time with the metric 

ds2 = eZe(dt2 - dr2) - e2*{(dx2)2 + ( d ~ ~ ) ~ }  (5 5) 
where 6 and + are functions of Y and t only. The  non-zero components of the Ricci 
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tensor are 

Roo = 8,oo + W , O O  - 2#,08,0 + 2#?0 - 8.11 - 2#,10,1 

ROI = 2$,01 -~#,Oe,i-2~,1~,0-2#,0#,1 

Rl, = ~.11+2#,11-~#,~~,1+2#~1-~,0,-2$r,0~,0 

R2, = expP(# - e))( - #,oo -2Co + #,li +2#3 
R33 = R22. 

The energy-momentum tensor for this neutrino field is 

E ~ ,  = ichee(($ - $)(~p: ,  -p*p,,) + ( P P ~  -p*p,,)($ -at>). 
T h e  neutrino condition becomes 

( lnp2+8+2$) = 0 

(lnp2+28+$r) = 0. 

Thus 

where L and l'li17 are arbitrary complex functions. But Eo, = 0 and E o ,  = 0 imply 
that lW is constant. Therefore 

P 2  = e-e e-*$ exp(2L(~ - t)} 

and therefore Eoo = E l ,  = - Eol .  These equations provide relations between 0, $I 
and their derivatives. T o  obtain a particular solution of these we take the case when 
is independent of t and obtain the solution 

lnp2 + e + 2# = 2L(r - t)iV(x2 - ix3) 

e 2 1  = r 

(5.6) 

v here f(r - t) is arbitrary. We put 

L(Y - t) = Z(T - t )  + ih(r - t )  

where I +  X are real functions. Then 

p = Y - ~ ' ~  exp(-&f(r-t))exp(Z+ih) 

together with the condition 
I 

This is also a radiation solution of type R,, = - 02DiLDv, where 

0 2  = -@y e-2EX' 

and the vector H, is given by 

H, = - 4 2 ~ 2  e-z?(ii$ + 8:). 

The  metric given by ( 5 . 5 )  and (5.6) is a particular case of Rao's (1964) solution (ii). 
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The  associated space-time has also been interpreted as admitting an electromagnetic 
field (Goodinson 1969). 

5.5.  Solution ( 5 )  
The purpose of this paragraph is to demonstrate that it is impossible to obtain a 

spherically symmetric pure radiation field of the type RbV = - a2D,D, for the two- 
component neutrino fields considered here. This result is analogous to the extension 
of Birkhoff’s theorem to Einstein-Maxwell fields (Hoffmann 1932). Let us consider 
the most general spherically symmetric metric 

ds2 = A dt2 - B dr2 - C(d02 + sin20 d$2) 

where A, B and C are functions of Y and t. The Ricci tensor for this metric has 
components 

Roo, ROl, R11, R22 non-zel-0 
R33 = sin26R2, 

R 0 2 >  1103,  R12> R13, R23 zero. 

For a spherically symmetric solution it is necessary that D2 = 0 = D3.  So, neces- 
sarily p = I q, in which case the energy-momentum tensor for the neutrino field is 

E,, = c$i{(l/ASE I dBSi)(ipp:v - ip*p,yi- cos Opp*8:) 

+ (ipp; - ip*p,, + COS 0pp*@(1/~~0,  d~at)). 
Xow, we put p = PeiS, where P and 8 are real functions of all four coordinates, and 
consider the field equations RO2 = 0 and RO3 = 0. These give 

iCfidA(PPT2 -P*P,z) = 0 
i.e. 

at P22- = 0 ae 
and 

i.e. 
i~fiz/A(pp*~ -p*p,,) + c h d A  cos Opp* = 0. 

P 2  2- + cos0 = 0. G; 1 
The only possible solution of these is that P = 0. Thus we have shown that a 
spherically symmetric pure radiation field cannot be interpreted as neutrino 
radiation. 

The  physical significance of the exact solutions obtained here and the question of 
neutrino fields which are not purely radiational will be considered in a later paper. 
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Appendix 1 
If we define the complex alternating tensor by 

E,,,, = Q d d + V l  
A 3  
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and put 

and 

then we have the following relationships between the y matrices 

y p y 5  = LE U V 
3 P L P V Y  Y Y 

YUVY5 (A1 1 y K h  = -EK&lV 

YxynYu = gx nYu - gxfiy, +g.uYx - 2EK~fi VY "y5  

If the yU are linear combinations of p, the matrices of Dirac's standard representa- 
tion, then we can put ya = haapa. Then 

2ga* = yay4 + yaya = haah* b(,8aPb +,@a) 

= 2h""h* bqa b .  

Thus 

Now 

1 
- = h2q. 
g 

= i/30/31p2p3 
i.e. 

Appendix 2 

y5 = p 5 .  

For the metric 

ds2 = ho2(dX0)2 +2dx0dx1 - hz2((dX2)2 + (dx3)'} 

the components of the Ricci tensor are 
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R2, = 0 

R33 = R22. 

According to our two-component restriction, the spinor 4 is of the form 

C$ = (-:), where U = 6). Then defining the y matrices by (5.2), we obtain for 

2 

h0 

Du = +YU+ 

Dl = -Cp+4)(p+4)* Do = 2hO(PP* + 44*h 

D ,  = 2ih2@q*-qp*), D3 = 2hZCpp" - 44"). 
The spinor connection operators Fv for this metric are given by 

For the case p = - p the neutrino condition (2.3) gives 
(In hohz2p2),, = 0 

(In hOh2p2),, - i( In hOh2p2),3 = 0; 

the non-zero terms of the energy-momentum tensor are 
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and the vector H, is given by 

Hu = -21/2h,hz,lp2(iS,2 + S U 3 ) .  
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